Projekte
Als Beitrag zur Entwicklung zukünftiger sparsamerer Gasturbinen werden in unserem Labor Stabilisations- und Verlöschmechanismen in turbulenten Verbrennungen untersucht. Die Interaktion zwischen der Strömung und der chemischen Reaktion soll dazu unter realen Bedingungen erforscht werden. Unsere Daten werden dazu verwendet, um anschließend numerische Modelle zu verbessern und Testbrenner für Gasturbinen zu entwickeln. Mehr hierzu...
Die Raman Spektroskopie bietet als nicht-intrusive Diagnosemethode den Vorteil, durch die Interaktion von Licht und Materie Informationen über chemische Vorgänge zu liefern, ohne diese zu stören. Ein typisches Problem der Diagnosemethode ist jedoch die geringe Intensität des Messsignals im Vergleich zu Hintergrundeinflüssen wie Wärmestrahlung und Fluoreszenz. In diesem Projekt wird untersucht, inwieweit mittels der neuen Raman-Technik "SERDS" auch in stark hintergrundbelasteten Gasphasen quantitative Messungen möglich sind. Mehr hierzu...
Ammoniak (NH3) ist ein kohlenstofffreier Energieträger, der wesentliche Vorteile hinsichtlich Transport and Lagerung gegenüber Wasserstoff bietet. Um Ammoniak direkt als Brennstoff nutzbar zu machen, wird Wasserstoff als Additiv verwendet, um den Verbrennungsprozess zu beschleunigen. Dabei ist partielles Cracking eine vielversprechende Strategie. Hierbei wird ein Teil des NH3 in Wasserstoff und Stickstoff aufgespalten und mit verbrannt. Allerdings führen bestimmte Reaktionen während der Verbrennung zur Bildung von hohen Mengen an Stickoxiden. Unser Forschungsziel ist die Generierung von quantitativen Grundlagendaten, die zum besseren Verständnis der Ammoniak-Verbrennung beitragen werden. Mehr hierzu...
Clean Circles
Die Speicherung von Energie aus erneuerbaren Quellen ist zurzeit ein wichtiges Forschungsproblem im Rahmen der Energiewende. In einem Kooperationsprojekt mit der TU Darmstadt untersuchen wir Eisen als günstigen und massenhaft produzierten Energieträger. Durch die Reduktion aus Eisenoxid kann Energie gespeichert und durch die Verbrennung des Eisens wieder z.B. in Form von Wärme freigesetzt werden.
Die Verbrennung von Eisen(-Partikeln) erfolgt jedoch als heterogene Oberflächenreaktion, deren komplexe Wärme- und Stofftransportprozesse im Rahmen des Projekts erforscht werden. Viele Einflüsse auf die Oxidationsreaktion (Verbrennung), wie die Beschaffenheit der Eisenpartikel oder Umgebungsbedingungen, werden mittels Laseroptischer Methoden untersucht und numerisch modelliert. Mehr hierzu...
Die spontane Raman-Spektroskopie ist eine optische Messmethode, die eine zeitlich und räumlich hochaufgelöste Untersuchung von Temperatur und Konzentration verschiedener Spezies in reaktiven Strömungen erlaubt. Jede untersuchte Molekülspezies weist - wie ein Fingerabdruck - ein einzigartiges Spektrum auf, das zur Identifikation und Quantifizierung verwendet wird.
Jedoch bringt die Raman-Spektroskopie auch viele Herausforderungen wie beispielsweise die geringe Signalstärke im Vergleich zum Hintergrundrauschen oder die Überlagerung der "Fingerabdrücke" verschiedener Molekülspezies mit sich.
Ziel der Forschungsarbeit ist es, die konventionelle Analysetechnik mit experimentellen Daten und maschinellem Lernen weiterzuentwickeln und damit die Anwendung der Raman-Spektroskopie robuster zu gestalten.
Publikationsliste
Koschnick, Konrad; Ferris, Alison M.; Lill, Johannes; Stark, Marcel; Winkler, Nico; Weinmann, Andreas; Dreizler, Andreas; Geyer, Dirk
Dual-track spectrometer design for 1D gas-phase Raman spectroscopy Artikel
In: Optics Express, Bd. 32, Nr. 14, S. 24384, 2024.
@article{Koschnick.2024,
title = {Dual-track spectrometer design for 1D gas-phase Raman spectroscopy},
author = {Konrad Koschnick and Alison M. Ferris and Johannes Lill and Marcel Stark and Nico Winkler and Andreas Weinmann and Andreas Dreizler and Dirk Geyer},
doi = {10.1364/OE.523437},
year = {2024},
date = {2024-01-01},
journal = {Optics Express},
volume = {32},
number = {14},
pages = {24384},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Shi, Shuguo; Breicher, Adrian; Trabold, Johannes; Hartl, Sandra; Barlow, Robert S.; Dreizler, Andreas; Geyer, Dirk
Cellular structures of laminar lean premixed H2/CH4/air polyhedral flames Artikel
In: Applications in Energy and Combustion Science, Bd. 13, S. 100105, 2023.
@article{Shi.2023,
title = {Cellular structures of laminar lean premixed H2/CH4/air polyhedral flames},
author = {Shuguo Shi and Adrian Breicher and Johannes Trabold and Sandra Hartl and Robert S. Barlow and Andreas Dreizler and Dirk Geyer},
url = {https://www.sciencedirect.com/science/article/pii/S2666352X22000486},
doi = {10.1016/j.jaecs.2022.100105},
year = {2023},
date = {2023-01-01},
journal = {Applications in Energy and Combustion Science},
volume = {13},
pages = {100105},
abstract = {Fundamental studies on the effects of differential diffusion of hydrogen (H2) on flame structure are motivated as the high diffusivity of H2 presents challenges for the modeling and optimization of combustion systems. Polyhedral Bunsen flames are examples of cellular flames mainly induced by the thermal-diffusive and hydrodynamic instabilities, which are characterized by periodic positively curved troughs and negatively curved cusps. Stationary laminar premixed fuel-lean H2/CH4/air polyhedral flames, with 50%, 68% and 79% H2 (by volume) and Lewis number (Le) less than unity, are investigated in this study. The internal scalar structures of cellular troughs and cusps in target flames are measured with a high-spatial-resolution 1D Raman/Rayleigh scattering system, combined with planar laser-induced fluorescence of hydroxyl radicals (OH-PLIF) and chemiluminescence imaging measurements to quantify the cell number and local flame curvature. The performance of the 1D Raman/Rayleigh imaging system is first assessed by comparing measurements of temperature and major species in a laminar premixed counterflow H2/CH4/air twin flame with a corresponding simulation. The results reveal significant combined effects of differential diffusion and curvature on flame structures with differences between trough and cusp regions in the measured mole fractions, equivalence ratio, temperature, and C/H-atom ratio. The positively curved troughs have significantly higher H2 mole fraction compared to the negatively curved cusps, due to the respective focusing/defocusing effect of curvature on highly diffusive H2. Consequently, the local equivalence ratio and temperature in trough regions are higher than those of cusps. With the increase of H2 content in the reactant mixture, the scalar differences between trough and cusp regions are enlarged due to the enhanced effects of curvature and differential diffusion. Near-vertical initial trajectories in H2 mole fraction, equivalence ratio, and C/H-atom ratio plotted against temperature showed that differential diffusion of H2 alters the species mole fractions in the cold reactants ($łeq$ 350 K).},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Dieter, K.; Richter, M.; Trabold, J.; Koschnick, K.; Schael, F.; Dreizler, A.; Geyer, D.
Temperature dependent Raman spectra of pure, gaseous formaldehyde for combustion diagnostics Artikel
In: Proceedings of the Combustion Institute, 2023.
@article{Dieter.2022b,
title = {Temperature dependent Raman spectra of pure, gaseous formaldehyde for combustion diagnostics},
author = {K. Dieter and M. Richter and J. Trabold and K. Koschnick and F. Schael and A. Dreizler and D. Geyer},
url = {https://www.sciencedirect.com/science/article/pii/S1540748922003443},
doi = {10.1016/j.proci.2022.08.049},
year = {2023},
date = {2023-01-01},
journal = {Proceedings of the Combustion Institute},
abstract = {The combustion of renewable fuels such as methanol or ethanol produces comparatively large concentrations of formaldehyde (CH2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>O) as a combustion intermediate. This intermediate needs to be quantitatively measured using non-intrusive laser diagnostics to provide a better understanding of the chemical processes in the reaction zone. Spontaneous Raman scattering is used in reactive flow diagnostics to measure spatially resolved species concentrations. For diagnostics of CH2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>O using Raman scattering, the temperature-dependent Raman spectra of gaseous CH2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>O are required, but not yet available. One reason for this is that gaseous CH2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>O polymerizes very rapidly, especially at higher temperatures, and can only be made available in pure form for spectroscopic investigations by specific preparation. For this purpose, a continuous flow reactor was developed in which trioxane is pyrolyzed to monomeric CH2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>O by means of thermal decomposition in a tube reactor. Using a CW-Raman spectrometer, the products of a thermal decomposition at isothermal conditions are analyzed downstream of the tube reactor and CH2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>O is detected as the only product of the pyrolysis process. Raman spectra of gaseous CH2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>O are characterized for the first time using the continuous flow system. The Raman scattering in the CH-bend and CH-stretch regions show characteristic bands, which are, for instance, different in the spectral position to the ones from ethanol, allowing for a spectral discrimination. Raman cross sections~reveal that the harmonic-oscillator assumption substantially deviates for the tetratomic CH2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>O, which underlines the relevance of an experimental characterization at elevated temperatures. Finally, the flow systems developed for the generation of monomeric gaseous CH2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>O can potentially be employed to improve diagnostics, such as laser induced fluorescence for a quantitative measurement of CH2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>O.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Engelmann, Linus; Wollny, Patrick; Breicher, Adrian; Geyer, Dirk; Chakraborty, Nilanjan; Kempf, Andreas
In: Combustion and Flame, Bd. 251, S. 112718, 2023.
@article{Engelmann.2023,
title = {Numerical analysis of multi-regime combustion using flamelet generated manifolds - a highly-resolved Large-Eddy Simulation of the Darmstadt multi-regime burner},
author = {Linus Engelmann and Patrick Wollny and Adrian Breicher and Dirk Geyer and Nilanjan Chakraborty and Andreas Kempf},
url = {https://www.sciencedirect.com/science/article/pii/S0010218023001037},
doi = {10.1016/j.combustflame.2023.112718},
year = {2023},
date = {2023-01-01},
journal = {Combustion and Flame},
volume = {251},
pages = {112718},
abstract = {Multi-regime effects occur due to the interaction of combustion phenomena such as partial premixing of reactants or product-recirculation and lead to the invalidity of idealization of local reaction zones by purely premixed or purely non-premixed flame structures. The recently proposed multi-regime burner (MRB) at the Hochschule Darmstadt and the TU Darmstadt is investigated using highly-resolved Large-Eddy Simulation (LES) regarding the present combustion modes – with focus on MILD combustion – and overall flame characteristics. Thermochemical experimental data and highly resolved LES are compared for two selected operating conditions MRB18b and MRB26b. The experimental investigation focuses on the overall flame structure by examining radial profiles of temperature and mixture fraction, as well as scatter plots of temperature and CH4<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>4</mn></msub></math> versus mixture fraction. The objective of this analysis is to provide insights into the reaction zone structure which are difficult to extract by experimental means, by using highly-resolved Large-Eddy Simulations under flow conditions representative of MRB18b and MRB26b. The generated database was used to allow for a separate analysis of the inner and outer flame branches. SO2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math> measurements were analyzed together with the simulated temperature fields to further assess the flame stabilization mechanism in this configuration. The importance of different flame zones and burning modes was analyzed using the flame index and temperature locus diagrams. The effects of the flame zones are found to evolve with the downstream distance and show distinct differences between the two operating conditions. The applied diagnostics reveal the spatial and thermodynamical state of the different regimes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Fiorina, Benoît; Luu, Tan Phong; Dillon, Samuel; Mercier, Renaud; Wang, Ping; Angelilli, Lorenzo; Ciottoli, Pietro Paolo; Hernández–Pérez, Francisco E.; Valorani, Mauro; Im, Hong G.; Massey, James C.; Li, Zhiyi; Chen, Zhi X.; Swaminathan, Nedunchezhian; Popp, Sebastian; Hartl, Sandra; Nicolai, Hendrik; Hasse, Christian; Dreizler, Andreas; Butz, David; Geyer, Dirk; Breicher, Adrian; Zhang, Kai; Duwig, Christophe; Zhang, Weijie; Han, Wang; Oijen, Jeroen; Péquin, Arthur; Parente, Alessandro; Engelmann, Linus; Kempf, Andreas; Hansinger, Maximilian; Pfitzner, Michael; Barlow, Robert S.
A joint numerical study of multi-regime turbulent combustion Artikel
In: Applications in Energy and Combustion Science, S. 100221, 2023.
@article{Fiorina.2023,
title = {A joint numerical study of multi-regime turbulent combustion},
author = {Benoît Fiorina and Tan Phong Luu and Samuel Dillon and Renaud Mercier and Ping Wang and Lorenzo Angelilli and Pietro Paolo Ciottoli and Francisco E. Hernández–Pérez and Mauro Valorani and Hong G. Im and James C. Massey and Zhiyi Li and Zhi X. Chen and Nedunchezhian Swaminathan and Sebastian Popp and Sandra Hartl and Hendrik Nicolai and Christian Hasse and Andreas Dreizler and David Butz and Dirk Geyer and Adrian Breicher and Kai Zhang and Christophe Duwig and Weijie Zhang and Wang Han and Jeroen Oijen and Arthur Péquin and Alessandro Parente and Linus Engelmann and Andreas Kempf and Maximilian Hansinger and Michael Pfitzner and Robert S. Barlow},
url = {https://www.sciencedirect.com/science/article/pii/S2666352X23001103},
doi = {10.1016/j.jaecs.2023.100221},
year = {2023},
date = {2023-01-01},
journal = {Applications in Energy and Combustion Science},
pages = {100221},
abstract = {This article presents a joint numerical study on the Multi Regime Burner configuration. The burner design consists of three concentric inlet streams, which can be operated independently with different equivalence ratios, allowing the operation of stratified flames characterized by different combustion regimes, including premixed, non-premixed, and multi-regime flame zones. Simulations were performed on three LES solvers based on different numerical methods. Combustion kinetics were simplified by using tabulated or reduced chemistry methods. Finally, different turbulent combustion modeling strategies were employed, covering geometrical, statistical, and reactor based approaches. Due to this significant scattering of simulation parameters, a conclusion on specific combustion model performance is impossible. However, with ten numerical groups involved in the numerical simulations, a rough statistical analysis is conducted: the average and the standard deviation of the numerical simulation are computed and compared against experiments. This joint numerical study is therefore a partial illustration of the community's ability to model turbulent combustion. This exercise gives the average performance of current simulations and identifies physical phenomena not well captured today by most modeling strategies. Detailed comparisons between experimental and numerical data along radial profiles taken at different axial positions showed that the temperature field is fairly well captured up to 60 mm from the burner exit. The comparison reveals, however, significant discrepancies regarding CO mass fraction prediction. Three causes may explain this phenomenon. The first reason is the higher sensitivity of carbon monoxide to the simplification of detailed chemistry, especially when multiple combustion regimes are encountered. The second is the bias introduced by artificial thickening, which overestimates the species' mass production rate. This behavior has been illustrated by manufacturing mean thickened turbulent flame brush from a random displacement of 1-D laminar flame solutions. The last one is the influence of the subgrid-scale flame wrinkling on the filtered chemical flame structure, which may be challenging to model.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Lill, Johannes; Dieter, Kevin; Koschnick, Konrad; Dreizler, Andreas; Magnotti, Gaetano; Geyer, Dirk
In: Journal of Quantitative Spectroscopy and Radiative Transfer, Bd. 297, S. 108479, 2023.
@article{Lill.2023,
title = {Measurement and simulation of temperature-dependent spontaneous Raman scattering of O2 including P and R branches},
author = {Johannes Lill and Kevin Dieter and Konrad Koschnick and Andreas Dreizler and Gaetano Magnotti and Dirk Geyer},
doi = {10.1016/j.jqsrt.2022.108479},
year = {2023},
date = {2023-01-01},
journal = {Journal of Quantitative Spectroscopy and Radiative Transfer},
volume = {297},
pages = {108479},
abstract = {Journal of Quantitative Spectroscopy and Radiative Transfer, 297 (2023) 108479. doi:10.1016/j.jqsrt.2022.108479},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Lulic, Haris; Breicher, Adrian; Scholtissek, Arne; Lapenna, Pasquale Eduardo; Dreizler, Andreas; Creta, Francesco; Hasse, Christian; Geyer, Dirk; Ferraro, Federica
In: Proceedings of the Combustion Institute, Bd. 39, Nr. 2, S. 1977–1986, 2023.
@article{Lulic.2023,
title = {On polyhedral structures of lean methane/hydrogen Bunsen flames: Combined experimental and numerical analysis},
author = {Haris Lulic and Adrian Breicher and Arne Scholtissek and Pasquale Eduardo Lapenna and Andreas Dreizler and Francesco Creta and Christian Hasse and Dirk Geyer and Federica Ferraro},
url = {https://www.sciencedirect.com/science/article/pii/S1540748922003091},
doi = {10.1016/j.proci.2022.07.251},
year = {2023},
date = {2023-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {39},
number = {2},
pages = {1977–1986},
abstract = {In premixed flame propagation of lean hydrogen or hydrogen-enriched blends, both hydrodynamic and thermo-diffusive instabilities are governing the flame front shape and affect its propagation velocity. As a result, different types of cellular patterns can occur along the flame front in a laminar scenario. In this context, an interesting phenomenon is the formation of polyhedral flames which can be observed in a Bunsen burner. It is the objective of this work to systematically characterize the polyhedral structures of premixed methane/hydrogen Bunsen flames in a combined experimental and numerical study. A series of lean flames with hydrogen content varying between 20 and 85% at two equivalence ratios is investigated. The experiments encompass chemiluminescence imaging together with Planar Laser-induced Fluorescence (PLIF) measurements of the OH radical. Characteristic cell sizes are quantified from the experiments and related to the characteristic length scales obtained from a linear stability analysis. In the experiments, it is observed that the cell sizes at the base of the polyhedral Bunsen flames decrease almost linearly with hydrogen addition and only a weak dependence on the equivalence ratio is noted. These trends are well reflected in the numerical results and the length scale comparison further shows that the wavelength with the maximum growth rate predicted by the linear stability analysis is comparable to the cell size obtained from the experiment. The correlation between the experimental findings and the linear stability analysis is discussed from multiple perspectives considering the governing time and length scales, furthermore drawing relations to previous studies on cellular flames.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Luo, Yujuan; Ferraro, Federica; Breicher, Adrian; Böttler, Hannes; Dreizler, Andreas; Geyer, Dirk; Hasse, Christian; Scholtissek, Arne
A novel flamelet manifold parametrization approach for lean CH4–H2-air flames Artikel
In: International Journal of Hydrogen Energy, 2023.
@article{Luo.2023,
title = {A novel flamelet manifold parametrization approach for lean CH4–H2-air flames},
author = {Yujuan Luo and Federica Ferraro and Adrian Breicher and Hannes Böttler and Andreas Dreizler and Dirk Geyer and Christian Hasse and Arne Scholtissek},
url = {https://www.sciencedirect.com/science/article/pii/S0360319922044706},
doi = {10.1016/j.ijhydene.2022.09.233},
year = {2023},
date = {2023-01-01},
journal = {International Journal of Hydrogen Energy},
abstract = {Hydrogen is a carbon-free energy carrier that can substantially support the decarbonization of the power generation and transportation sector in the near future. Blending H2 into natural gas represents a feasible option to continue using the current infrastructure, allowing a smooth transition to pure H2 combustion technologies. In the present study, a flamelet model is proposed to describe lean CH4–H2-air laminar Bunsen flames with inert gas as a coflow, simultaneously taking into account multiple complex physical phenomena such as differential diffusion, heat losses at the burner wall and mixing between the main flow and coflow. In most previous works based on manifold-based reduction methods, transport equations are solved for the progress variable, mixture fraction and enthalpy. In contrast, transport equations for several species and enthalpy are solved in the present study and species diffusivities are evaluated with a mixture-averaged diffusion model. The control variables of the manifold are then reconstructed with those transported variables. In order to consider the mixing between the main flow and the inert coflow, two different approaches based on a three-dimensional and a four-dimensional manifold, respectively, are formulated and assessed. Utilizing a ``linear mixing'' assumption, the three-dimensional manifold is parameterized by a progress variable, an approximate Bilger mixture fraction and enthalpy. The four-dimensional manifold relaxes this assumption and additionally includes the inert gas mass fraction as the fourth control variable. The accuracy of the two approaches is evaluated by comparison with detailed chemistry results and experimental measurements. Overall, results obtained with both approaches show good agreement with the reference data, both qualitatively and quantitatively, indicating that all the effects mentioned above are well captured. Slightly better agreement is achieved with the four-dimensional manifold, which shows superiority in the mixing layer between the main flow and the inert coflow.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Richter, M.; Schultheis, R.; Dawson, J. R.; Gruber, A.; Barlow, R. S.; Dreizler, A.; Geyer, D.
Extinction strain rates of premixed ammonia/hydrogen/nitrogen-air counterflow flames Artikel
In: Proceedings of the Combustion Institute, Bd. 39, Nr. 2, S. 2027–2035, 2023.
@article{Richter.2023,
title = {Extinction strain rates of premixed ammonia/hydrogen/nitrogen-air counterflow flames},
author = {M. Richter and R. Schultheis and J. R. Dawson and A. Gruber and R. S. Barlow and A. Dreizler and D. Geyer},
url = {https://www.sciencedirect.com/science/article/pii/S1540748922003790},
doi = {10.1016/j.proci.2022.09.011},
year = {2023},
date = {2023-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {39},
number = {2},
pages = {2027–2035},
abstract = {Chemical energy vectors will play a crucial role in the transition of the global energy system, due to their essential advantages in storing energy in form of gaseous, liquid, or solid fuels. Ammonia (NH3) has been identified as a highly promising candidate, as it is carbon-free, can be stored at moderate pressures, and already has a developed distribution infrastructure. As a fuel NH3 has poor combustion properties that can be improved by the addition of hydrogen, which can be obtained energy-efficiently by partially cracking ammonia into hydrogen (H2) and nitrogen (N2) prior to the combustion process. The resulting NH3/H2/N2 blend leads to significantly improved flame stability and resilience to strain-induced blow-out, despite similar laminar flame properties compared to equivalent methane/air flames. This study reports the first measurements of extinction strain rates, measured using the premixed twin-flame configuration in a laminar opposed jet burner, for two NH3/H2/N2 blends over a range of equivalence ratios. Local strain rates are measured using particle tracking velocimetry (PTV) and are related to the inflow conditions, such that the local strain rate at the extinction point can be approximated. The results are compared with 1D-simulations using three recent kinetic mechanisms for ammonia oxidation. By relating the extinction strain rates to laminar flame properties of the unstretched flame, a comparison of the extinction behaviour of CH4 and NH3/H2/N2 blends can be made. For lean mixtures, NH3/H2/N2-air flames show a significant higher extinction resistance in comparison to CH4/air. In addition, a strong non-linear dependence between the resistance to extinction and equivalence ratio for NH3/H2/N2 blends is observed.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Trabold, Johannes; Butz, David; Schneider, Silvan; Dieter, Kevin; Barlow, Robert; Dreizler, Andreas; Geyer, Dirk
Fast shutter line-imaging system for dual-dispersion Raman spectroscopy in ethanol and OME flames Artikel
In: Combustion and Flame, Bd. 243, S. 111864, 2022.
@article{Trabold.2022,
title = {Fast shutter line-imaging system for dual-dispersion Raman spectroscopy in ethanol and OME flames},
author = {Johannes Trabold and David Butz and Silvan Schneider and Kevin Dieter and Robert Barlow and Andreas Dreizler and Dirk Geyer},
url = {https://www.sciencedirect.com/science/article/pii/S0010218021006076},
doi = {10.1016/j.combustflame.2021.111864},
year = {2022},
date = {2022-01-01},
journal = {Combustion and Flame},
volume = {243},
pages = {111864},
abstract = {Chemical energy carriers synthesized from renewable energy sources such as ethanol or oxymethylene ethers (OME) will become increasingly important for CO2<math><msub is=textquotedbltruetextquotedbl><mrow is=textquotedbltruetextquotedbl></mrow><mn is=textquotedbltruetextquotedbl>2</mn></msub></math>-neutral thermochemical energy conversion processes. Therefore, it is important to make these processes efficient and clean. This needs more predictive numerical simulation tools and an improved understanding of the combustion process. For this purpose, spatially resolved measurements of local thermochemical states in reaction zones are required, for which combined Raman- and Rayleigh spectroscopy is suitable. Since a large number of intermediate hydrocarbons occur in the reaction zones of ethanol and OME flames, Raman spectroscopy must be evolved for quantitative measurement of these species over a wide temperature range. Against this background, this study pursues the goal of creating the instrumental and apparatus-related pre-requisites. The setup of a new dual-dispersion spectrometer and its main specifications are presented. The usability of the spectrometer is demonstrated on the example of premixed and partially-premixed ethanol/air and OME-3/air flames. For this purpose, a new counterflow burner is presented, which enables laminar, single-phase combustion processes of pre-vaporized fuels.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Butz, D.; Breicher, A.; Barlow, R. S.; Geyer, D.; Dreizler, A.
In: Combustion and Flame, Nr. 09, S. 111941, 2022.
@article{Butz.2022,
title = {Turbulent multi-regime methane-air flames analysed by Raman/Rayleigh spectroscopy and conditional velocity field measurements},
author = {D. Butz and A. Breicher and R. S. Barlow and D. Geyer and A. Dreizler},
doi = {10.1016/j.combustflame.2021.111941},
year = {2022},
date = {2022-01-01},
journal = {Combustion and Flame},
number = {09},
pages = {111941},
abstract = {Combustion and Flame, Corrected proof, 111941. doi:10.1016/j.combustflame.2021.111941},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Dieter, K.; Koschnick, K.; Lill, J.; Magnotti, G.; Weinmann, A.; Dreizler, A.; Geyer, D.
In: Journal of Quantitative Spectroscopy and Radiative Transfer, Bd. 277, S. 107978, 2022.
@article{Dieter.2022,
title = {Development of a Raman spectrometer for the characterization of gaseous hydrocarbons at high temperatures},
author = {K. Dieter and K. Koschnick and J. Lill and G. Magnotti and A. Weinmann and A. Dreizler and D. Geyer},
doi = {10.1016/j.jqsrt.2021.107978},
year = {2022},
date = {2022-01-01},
journal = {Journal of Quantitative Spectroscopy and Radiative Transfer},
volume = {277},
pages = {107978},
abstract = {Journal of Quantitative Spectroscopy and Radiative Transfer, 277 (2022) 107978. doi:10.1016/j.jqsrt.2021.107978},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Paudel, Shakun; Weber, Martin; Geyer, Dirk; Saenger, Nicole
Experimental and numerical study of Zuppinger water wheel model Artikel
In: Proceedings of the Institution of Civil Engineers - Water Management, Bd. 175, Nr. 4, S. 206–216, 2022, ISSN: 1741-7589.
@article{Paudel.2022,
title = {Experimental and numerical study of Zuppinger water wheel model},
author = {Shakun Paudel and Martin Weber and Dirk Geyer and Nicole Saenger},
doi = {10.1680/jwama.20.00056},
issn = {1741-7589},
year = {2022},
date = {2022-01-01},
journal = {Proceedings of the Institution of Civil Engineers - Water Management},
volume = {175},
number = {4},
pages = {206–216},
abstract = {Proceedings of the Institution of Civil Engineers - Water Management 2022.175:206-216},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Trabold, J.; Hartl, S.; Walther, S.; Johchi, A.; Dreizler, A.; Geyer, D.
Fuel Effects in Turbulent Premixed Pre-vaporised Alcohol/Air Jet Flames Artikel
In: Flow, Turbulence and Combustion, Bd. 106, Nr. 2, S. 547–573, 2021.
@article{Trabold.2021,
title = {Fuel Effects in Turbulent Premixed Pre-vaporised Alcohol/Air Jet Flames},
author = {J. Trabold and S. Hartl and S. Walther and A. Johchi and A. Dreizler and D. Geyer},
doi = {10.1007/s10494-020-00166-6},
year = {2021},
date = {2021-01-01},
journal = {Flow, Turbulence and Combustion},
volume = {106},
number = {2},
pages = {547–573},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Dunn, M. J.; Macfarlane, A. R. W.; Barlow, R. S.; Geyer, D.; Dieter, K.; Masri, A. R.
Spontaneous Raman–LIF–CO–OH measurements of species concentration in turbulent spray flames Artikel
In: Proceedings of the Combustion Institute, Bd. 38, Nr. 1, S. 1779–1786, 2021.
@article{Dunn.2021,
title = {Spontaneous Raman–LIF–CO–OH measurements of species concentration in turbulent spray flames},
author = {M. J. Dunn and A. R. W. Macfarlane and R. S. Barlow and D. Geyer and K. Dieter and A. R. Masri},
doi = {10.1016/j.proci.2020.07.037},
year = {2021},
date = {2021-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {38},
number = {1},
pages = {1779–1786},
abstract = {Proceedings of the Combustion Institute, Corrected proof. doi:10.1016/j.proci.2020.07.037},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Popp, Sebastian; Hartl, Sandra; Butz, David; Geyer, Dirk; Dreizler, Andreas; Vervisch, Luc; Hasse, Christian
In: Proceedings of the Combustion Institute, Bd. 38, Nr. 2, S. 2551–2558, 2021.
@article{Popp.2021,
title = {Assessing multi-regime combustion in a novel burner configuration with large eddy simulations using tabulated chemistry},
author = {Sebastian Popp and Sandra Hartl and David Butz and Dirk Geyer and Andreas Dreizler and Luc Vervisch and Christian Hasse},
doi = {10.1016/j.proci.2020.06.098},
year = {2021},
date = {2021-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {38},
number = {2},
pages = {2551–2558},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Butz, David; Hartl, Sandra; Popp, Sebastian; Walther, Steffen; Barlow, Robert S.; Hasse, Christian; Dreizler, Andreas; Geyer, Dirk
Local flame structure analysis in turbulent CH4/air flames with multi-regime characteristics Artikel
In: Combustion and Flame, Bd. 210, S. 426–438, 2019.
@article{Butz.2019b,
title = {Local flame structure analysis in turbulent CH4/air flames with multi-regime characteristics},
author = {David Butz and Sandra Hartl and Sebastian Popp and Steffen Walther and Robert S. Barlow and Christian Hasse and Andreas Dreizler and Dirk Geyer},
year = {2019},
date = {2019-01-01},
journal = {Combustion and Flame},
volume = {210},
pages = {426–438},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Butz, David; Hartl, Sandra; Popp, Sebastian; Walther, Steffen; Barlow, Robert S.; Hasse, Christian; Dreizler, Andreas; Geyer, Dirk
Local flame structure analysis in turbulent CH4/air flames with multi-regime characteristics Artikel
In: Combustion and Flame, Bd. 210, S. 426–438, 2019.
@article{Butz.2019,
title = {Local flame structure analysis in turbulent CH4/air flames with multi-regime characteristics},
author = {David Butz and Sandra Hartl and Sebastian Popp and Steffen Walther and Robert S. Barlow and Christian Hasse and Andreas Dreizler and Dirk Geyer},
url = {https://www.sciencedirect.com/science/article/pii/S0010218019303967},
doi = {10.1016/j.combustflame.2019.08.032},
year = {2019},
date = {2019-01-01},
journal = {Combustion and Flame},
volume = {210},
pages = {426–438},
abstract = {In practical applications, partial premixing of fuel and oxidizer, as well as recirculation of combustion products, result in complex combustion scenarios where multi-regime effects arise and a numerical representation of local reaction zones by purely premixed or purely non-premixed flame structures may not hold. Here, a novel burner system is introduced to investigate the fundamental characteristics of multi-regime combustion and to provide a basis for validating numerical models. This multi-regime burner (MRB) is specifically designed to produce flames with multi-regime characteristics while maintaining well-defined boundary conditions. Thermochemical data from Raman/Rayleigh/CO-LIF scattering experiments are provided for two selected operating conditions. The experimental investigation focuses on the overall flame structure by examining radial profiles of temperature and mixture fraction, as well as scatter plots of temperature, CH4, and CO versus mixture fraction. In order to assess the relative importance of different flame regimes, the gradient-free regime identification (GFRI) approach is extended to allow for an automated classification of local reaction zone structures. Classification criteria are defined, based on the ratio of local heat release rate peaks associated with premixed and non-premixed reaction zones located in close spatial proximity, and an automated process is implemented to classify 1D Raman/Rayleigh sample lines as premixed, dominantly premixed, multi-regime, dominantly non-premixed, or non-premixed flame zones. The importance of different flame zones, indicated by their population fractions, are found to evolve with downstream distance and show distinct differences between the two selected flames. Further, a prior analysis is used to test the applicability of 1D flame structure assumptions for the underlying combustion regime.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Hartl, S.; Winkle, R.; Geyer, D.; Dreizler, A.; Magnotti, G.; Hasse, C.; Barlow, R. S.
In: Proceedings of the Combustion Institute, Bd. 37, Nr. 2, S. 2297–2305, 2019.
@article{Hartl.2019,
title = {Assessing the relative importance of flame regimes in Raman/Rayleigh line measurements of turbulent lifted flames},
author = {S. Hartl and R. Winkle and D. Geyer and A. Dreizler and G. Magnotti and C. Hasse and R. S. Barlow},
doi = {10.1016/j.proci.2018.06.067},
year = {2019},
date = {2019-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {37},
number = {2},
pages = {2297–2305},
abstract = {Proceedings of the Combustion Institute, 37 (2018) 2297-2305. doi:10.1016/j.proci.2018.06.067},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Hartl, Sandra; Geyer, Dirk; Hasse, Christian; Zhao, Xinyu; Wang, Haiou; Barlow, Robert S.
Assessing an experimental approach for chemical explosive mode and heat release rate using DNS data Artikel
In: Combustion and Flame, Bd. 209, S. 214–224, 2019.
@article{Hartl.2019b,
title = {Assessing an experimental approach for chemical explosive mode and heat release rate using DNS data},
author = {Sandra Hartl and Dirk Geyer and Christian Hasse and Xinyu Zhao and Haiou Wang and Robert S. Barlow},
doi = {10.1016/j.combustflame.2019.07.038},
year = {2019},
date = {2019-01-01},
journal = {Combustion and Flame},
volume = {209},
pages = {214–224},
abstract = {Combustion and Flame, 209 (2019) 214-224. doi:10.1016/j.combustflame.2019.07.038},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Schneider, Silvan; Geyer, Dirk; Magnotti, Gaetano; Dunn, Matthew J.; Barlow, Robert S.; Dreizler, Andreas
Structure of a stratified CH4 flame with H2 addition Artikel
In: Proceedings of the Combustion Institute, Bd. 37, Nr. 2, S. 2307–2315, 2019.
@article{Schneider.2019,
title = {Structure of a stratified CH4 flame with H2 addition},
author = {Silvan Schneider and Dirk Geyer and Gaetano Magnotti and Matthew J. Dunn and Robert S. Barlow and Andreas Dreizler},
doi = {10.1016/j.proci.2018.06.205},
year = {2019},
date = {2019-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {37},
number = {2},
pages = {2307–2315},
abstract = {Proceedings of the Combustion Institute, 37 (2018) 2307-2315. doi:10.1016/j.proci.2018.06.205},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Straub, C.; Kronenburg, A.; Stein, O. T.; Barlow, R. S.; Geyer, D.
Modeling stratified flames with and without shear using multiple mapping conditioning Artikel
In: Proceedings of the Combustion Institute, Bd. 37, Nr. 2, S. 2317–2324, 2019.
@article{Straub.2019,
title = {Modeling stratified flames with and without shear using multiple mapping conditioning},
author = {C. Straub and A. Kronenburg and O. T. Stein and R. S. Barlow and D. Geyer},
doi = {10.1016/j.proci.2018.07.033},
year = {2019},
date = {2019-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {37},
number = {2},
pages = {2317–2324},
abstract = {Proceedings of the Combustion Institute, 37 (2018) 2317-2324. doi:10.1016/j.proci.2018.07.033},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Straub, Carmen; Kronenburg, Andreas; Stein, Oliver T.; Kuenne, Guido; Janicka, Johannes; Barlow, Robert S.; Geyer, Dirk
In: Combustion and Flame, Bd. 196, S. 325–336, 2018.
@article{Straub.2018,
title = {Multiple mapping conditioning coupled with an artificially thickened flame model for turbulent premixed combustion},
author = {Carmen Straub and Andreas Kronenburg and Oliver T. Stein and Guido Kuenne and Johannes Janicka and Robert S. Barlow and Dirk Geyer},
doi = {10.1016/j.combustflame.2018.05.021},
year = {2018},
date = {2018-01-01},
journal = {Combustion and Flame},
volume = {196},
pages = {325–336},
abstract = {Combustion and Flame, 196 (2018) 325-336. doi:10.1016/j.combustflame.2018.05.021},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Hartl, Sandra; Geyer, Dirk; Dreizler, Andreas; Magnotti, Gaetano; Barlow, Robert S.; Hasse, Christian
Regime identification from Raman/Rayleigh line measurements in partially premixed flames Artikel
In: Combustion and Flame, Bd. 189, S. 126–141, 2018.
@article{Hartl.2018,
title = {Regime identification from Raman/Rayleigh line measurements in partially premixed flames},
author = {Sandra Hartl and Dirk Geyer and Andreas Dreizler and Gaetano Magnotti and Robert S. Barlow and Christian Hasse},
doi = {10.1016/j.combustflame.2017.10.024},
year = {2018},
date = {2018-01-01},
journal = {Combustion and Flame},
volume = {189},
pages = {126–141},
abstract = {Combustion and Flame, 189 (2017) 126-141. doi:10.1016/j.combustflame.2017.10.024},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Eitel, Felix; Pareja, Jhon; Johchi, Ayane; Böhm, Benjamin; Geyer, Dirk; Dreizler, Andreas
In: Combustion and Flame, Bd. 177, S. 193–206, 2017.
@article{Eitel.2017,
title = {Temporal evolution of auto-ignition of ethylene and methane jets propagating into a turbulent hot air co-flow vitiated with NO x},
author = {Felix Eitel and Jhon Pareja and Ayane Johchi and Benjamin Böhm and Dirk Geyer and Andreas Dreizler},
doi = {10.1016/j.combustflame.2016.12.009},
year = {2017},
date = {2017-01-01},
journal = {Combustion and Flame},
volume = {177},
pages = {193–206},
abstract = {Combustion and Flame, 177 (2016) 193-206. doi:10.1016/j.combustflame.2016.12.009},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Stahler, Thabo; Geyer, Dirk; Magnotti, Gaetano; Trunk, Philipp; Dunn, Matthew J.; Barlow, Robert S.; Dreizler, Andreas
Multiple conditioned analysis of the turbulent stratified flame A Artikel
In: Proceedings of the Combustion Institute, Bd. 36, Nr. 2, S. 1947–1955, 2017.
@article{Stahler.2017,
title = {Multiple conditioned analysis of the turbulent stratified flame A},
author = {Thabo Stahler and Dirk Geyer and Gaetano Magnotti and Philipp Trunk and Matthew J. Dunn and Robert S. Barlow and Andreas Dreizler},
doi = {10.1016/j.proci.2016.08.070},
year = {2017},
date = {2017-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {36},
number = {2},
pages = {1947–1955},
abstract = {Proceedings of the Combustion Institute, 36 (2016) 1947-1955. doi:10.1016/j.proci.2016.08.070},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Eitel, Felix; Pareja, Jhon; Geyer, Dirk; Johchi, Ayane; Michel, Florian; Elsäßer, Wolfgang; Dreizler, Andreas
A novel plasma heater for auto-ignition studies of turbulent non-premixed flows Artikel
In: Experiments in Fluids, Bd. 56, Nr. 10, 2015.
@article{Eitel.2015,
title = {A novel plasma heater for auto-ignition studies of turbulent non-premixed flows},
author = {Felix Eitel and Jhon Pareja and Dirk Geyer and Ayane Johchi and Florian Michel and Wolfgang Elsäßer and Andreas Dreizler},
doi = {10.1007/s00348-015-2059-7},
year = {2015},
date = {2015-01-01},
journal = {Experiments in Fluids},
volume = {56},
number = {10},
abstract = {Experiments in Fluids, doi:10.1007/s00348-015-2059-7},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Fiorina, B.; Mercier, R.; Kuenne, G.; Ketelheun, A.; Avdić, A.; Janicka, J.; Geyer, D.; Dreizler, A.; Alenius, E.; Duwig, C.; Trisjono, P.; Kleinheinz, K.; Kang, S.; Pitsch, H.; Proch, F.; Marincola, F. Cavallo; Kempf, A.
Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion Artikel
In: Combustion and Flame, Bd. 162, Nr. 11, S. 4264–4282, 2015.
@article{Fiorina.2015,
title = {Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion},
author = {B. Fiorina and R. Mercier and G. Kuenne and A. Ketelheun and A. Avdić and J. Janicka and D. Geyer and A. Dreizler and E. Alenius and C. Duwig and P. Trisjono and K. Kleinheinz and S. Kang and H. Pitsch and F. Proch and F. Cavallo Marincola and A. Kempf},
doi = {10.1016/j.combustflame.2015.07.036},
year = {2015},
date = {2015-01-01},
journal = {Combustion and Flame},
volume = {162},
number = {11},
pages = {4264–4282},
abstract = {Combustion and Flame, 162 (2015) 4264-4282. doi:10.1016/j.combustflame.2015.07.036},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Magnotti, G.; Geyer, D.; Barlow, R. S.
Interference free spontaneous Raman spectroscopy for measurements in rich hydrocarbon flames Artikel
In: Proceedings of the Combustion Institute, Bd. 35, Nr. 3, S. 3765–3772, 2015.
@article{Magnotti.2015,
title = {Interference free spontaneous Raman spectroscopy for measurements in rich hydrocarbon flames},
author = {G. Magnotti and D. Geyer and R. S. Barlow},
doi = {10.1016/j.proci.2014.05.076},
year = {2015},
date = {2015-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {35},
number = {3},
pages = {3765–3772},
abstract = {Proceedings of the Combustion Institute, 35 (2015) 3765-3772. doi:10.1016/j.proci.2014.05.076},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Kuenne, Guido; Seffrin, Florian; Fuest, Frederik; Stahler, Thabo; Ketelheun, Anja; Geyer, Drik; Janicka, Johannes; Dreizler, Andreas
In: Combustion and Flame, Bd. 159, Nr. 8, S. 2669–2689, 2012.
@article{Kuenne.2012,
title = {Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation},
author = {Guido Kuenne and Florian Seffrin and Frederik Fuest and Thabo Stahler and Anja Ketelheun and Drik Geyer and Johannes Janicka and Andreas Dreizler},
doi = {10.1016/j.combustflame.2012.02.010},
year = {2012},
date = {2012-01-01},
journal = {Combustion and Flame},
volume = {159},
number = {8},
pages = {2669–2689},
abstract = {Combustion and Flame, 159 (2012) 2669-2689. doi:10.1016/j.combustflame.2012.02.010},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Fuest, F.; Barlow, R. S.; Geyer, D.; Seffrin, F.; Dreizler, A.
A hybrid method for data evaluation in 1-D Raman spectroscopy Artikel
In: Proceedings of the Combustion Institute, Bd. 33, Nr. 1, S. 815–822, 2011.
@article{Fuest.2011,
title = {A hybrid method for data evaluation in 1-D Raman spectroscopy},
author = {F. Fuest and R. S. Barlow and D. Geyer and F. Seffrin and A. Dreizler},
doi = {10.1016/j.proci.2010.06.064},
year = {2011},
date = {2011-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {33},
number = {1},
pages = {815–822},
abstract = {Proceedings of the Combustion Institute, 33 (2011) 815-822. doi:10.1016/j.proci.2010.06.064},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Seffrin, F.; Fuest, F.; Geyer, D.; Dreizler, A.
Flow field studies of a new series of turbulent premixed stratified flames Artikel
In: Combustion and Flame, Bd. 157, Nr. 2, S. 384–396, 2010.
@article{Seffrin.2010,
title = {Flow field studies of a new series of turbulent premixed stratified flames},
author = {F. Seffrin and F. Fuest and D. Geyer and A. Dreizler},
doi = {10.1016/j.combustflame.2009.09.001},
year = {2010},
date = {2010-01-01},
journal = {Combustion and Flame},
volume = {157},
number = {2},
pages = {384–396},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Gregor, M. A.; Seffrin, F.; Fuest, F.; Geyer, D.; Dreizler, A.
Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering Artikel
In: Proceedings of the Combustion Institute, Bd. 32, Nr. 2, S. 1739–1746, 2009.
@article{Gregor.2009,
title = {Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering},
author = {M. A. Gregor and F. Seffrin and F. Fuest and D. Geyer and A. Dreizler},
doi = {10.1016/j.proci.2008.06.133},
year = {2009},
date = {2009-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {32},
number = {2},
pages = {1739–1746},
abstract = {Proceedings of the Combustion Institute, 32 (2009) 1739-1746. doi:10.1016/j.proci.2008.06.133},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Ekström, Fredrik; Wallin, Fredrik; Geyer, Dirk; Russ, Gerald
Use of Powerful Emission Simulation Tools and the Potential Pitfalls to Avoid Artikel
In: 2008.
@article{Ekstrom.2008,
title = {Use of Powerful Emission Simulation Tools and the Potential Pitfalls to Avoid},
author = {Fredrik Ekström and Fredrik Wallin and Dirk Geyer and Gerald Russ},
doi = {10.4271/2008-01-0626},
year = {2008},
date = {2008-01-01},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Petersson, Per; Olofsson, Jimmy; Brackman, Christian; Seyfried, Hans; Zetterberg, Johan; Richter, Mattias; Aldén, Marcus; Linne, Mark A.; Cheng, Robert K.; Nauert, Andreas; Geyer, Dirk; Dreizler, Andreas
In: Applied optics, Bd. 46, Nr. 19, S. 3928–3936, 2007, ISSN: 1559-128X.
@article{Petersson.2007,
title = {Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame},
author = {Per Petersson and Jimmy Olofsson and Christian Brackman and Hans Seyfried and Johan Zetterberg and Mattias Richter and Marcus Aldén and Mark A. Linne and Robert K. Cheng and Andreas Nauert and Dirk Geyer and Andreas Dreizler},
doi = {10.1364/AO.46.003928},
issn = {1559-128X},
year = {2007},
date = {2007-01-01},
journal = {Applied optics},
volume = {46},
number = {19},
pages = {3928–3936},
abstract = {The diagnostic techniques for simultaneous velocity and relative OH distribution, simultaneous temperature and relative OH distribution, and three component velocity mapping are described. The data extracted from the measurements include statistical moments for inflow fluid dynamics, temperature, conditional velocities, and scalar flux. The work is a first step in the development of a detailed large eddy simulation (LES) validation database for a turbulent, premixed flame. The low-swirl burner used in this investigation has many of the necessary attributes for LES model validation, including a simplified interior geometry; it operates well into the thin reaction zone for turbulent premixed flames, and flame stabilization is based entirely on the flow field and not on hardware or pilot flames.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Böhm, B.; Geyer, D.; Dreizler, A.; Venkatesan, K. K.; Laurendeau, N. M.; Renfro, M. W.
In: Proceedings of the Combustion Institute, Bd. 31, Nr. 1, S. 709–717, 2007.
@article{Bohm.2007,
title = {Simultaneous PIV/PTV/OH PLIF imaging: Conditional flow field statistics in partially premixed turbulent opposed jet flames},
author = {B. Böhm and D. Geyer and A. Dreizler and K. K. Venkatesan and N. M. Laurendeau and M. W. Renfro},
doi = {10.1016/j.proci.2006.07.057},
year = {2007},
date = {2007-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {31},
number = {1},
pages = {709–717},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Freitag, Martin; Klein, Markus; Gregor, Mark; Geyer, Dirk; Schneider, Christoph; Dreizler, Andreas; Janicka, Johannes
Mixing analysis of a swirling recirculating flow using DNS and experimental data Artikel
In: International Journal of Heat and Fluid Flow, Bd. 27, Nr. 4, S. 636–643, 2006.
@article{Freitag.2006,
title = {Mixing analysis of a swirling recirculating flow using DNS and experimental data},
author = {Martin Freitag and Markus Klein and Mark Gregor and Dirk Geyer and Christoph Schneider and Andreas Dreizler and Johannes Janicka},
doi = {10.1016/j.ijheatfluidflow.2006.02.020},
year = {2006},
date = {2006-01-01},
journal = {International Journal of Heat and Fluid Flow},
volume = {27},
number = {4},
pages = {636–643},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Venkatesan, Krishna K.; Laurendeau, Normand M.; Renfro, Michael W.; Geyer, Dirk; Dreizler, Andreas
In: Flow, Turbulence and Combustion, Bd. 76, Nr. 3, S. 257–278, 2006.
@article{Venkatesan.2006,
title = {Time-resolved measurements of hydroxyl in stable and extinguishing partially premixed turbulent opposed-jet flames},
author = {Krishna K. Venkatesan and Normand M. Laurendeau and Michael W. Renfro and Dirk Geyer and Andreas Dreizler},
doi = {10.1007/s10494-006-9014-x},
year = {2006},
date = {2006-01-01},
journal = {Flow, Turbulence and Combustion},
volume = {76},
number = {3},
pages = {257–278},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Geyer, D.; Kempf, A.; Dreizler, A.; Janicka, J.
Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES☆ Artikel
In: Combustion and Flame, Bd. 143, Nr. 4, S. 524–548, 2005.
@article{Geyer.2005b,
title = {Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES☆},
author = {D. Geyer and A. Kempf and A. Dreizler and J. Janicka},
doi = {10.1016/j.combustflame.2005.08.032},
year = {2005},
date = {2005-01-01},
journal = {Combustion and Flame},
volume = {143},
number = {4},
pages = {524–548},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Geyer, D.; Kempf, A.; Dreizler, A.; Janicka, J.
In: Proceedings of the Combustion Institute, Bd. 30, Nr. 1, S. 681–689, 2005.
@article{Geyer.2005c,
title = {Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1-D-Raman/Rayleigh experiments supported by LES},
author = {D. Geyer and A. Kempf and A. Dreizler and J. Janicka},
doi = {10.1016/j.proci.2004.08.216},
year = {2005},
date = {2005-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {30},
number = {1},
pages = {681–689},
abstract = {Proceedings of the Combustion Institute, 30 (2005) 681-689. doi:10.1016/j.proci.2004.08.216},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Geyer, D.; Dreizler, A.; Janicka, J.; Permana, A. D.; Chen, J. Y.
In: Proceedings of the Combustion Institute, Bd. 30, Nr. 1, S. 711–718, 2005.
@article{Geyer.2005d,
title = {Finite-rate chemistry effects in turbulent opposed flows: comparison of Raman/Rayleigh measurements and Monte Carlo PDF simulations},
author = {D. Geyer and A. Dreizler and J. Janicka and A. D. Permana and J. Y. Chen},
doi = {10.1016/j.proci.2004.08.011},
year = {2005},
date = {2005-01-01},
journal = {Proceedings of the Combustion Institute},
volume = {30},
number = {1},
pages = {711–718},
abstract = {Proceedings of the Combustion Institute, 30 (2005) 711-718. doi:10.1016/j.proci.2004.08.011},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Omar, S. K.; Geyer, D.; Dreizler, A.; Janicka, J.
In: Progress in Computational Fluid Dynamics, An International Journal, Bd. 4, Nr. 3/4/5, S. 241, 2004, ISSN: 1468-4349.
@article{Omar.2004,
title = {Investigation of flame structures in turbulent partially premixed counter-flow flames using planar laser-induced fluorescence},
author = {S. K. Omar and D. Geyer and A. Dreizler and J. Janicka},
doi = {10.1504/pcfd.2004.004092},
issn = {1468-4349},
year = {2004},
date = {2004-01-01},
journal = {Progress in Computational Fluid Dynamics, An International Journal},
volume = {4},
number = {3/4/5},
pages = {241},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Tacke, M. M.; Geyer, D.; Hassel, E. P.; Janicka, J.
A detailed investigation of the stabilization point of lifted turbulent diffusion flames Artikel
In: Symposium (International) on Combustion, Bd. 27, Nr. 1, S. 1157–1165, 1998.
@article{Tacke.1998,
title = {A detailed investigation of the stabilization point of lifted turbulent diffusion flames},
author = {M. M. Tacke and D. Geyer and E. P. Hassel and J. Janicka},
doi = {10.1016/S0082-0784(98)80518-3},
year = {1998},
date = {1998-01-01},
journal = {Symposium (International) on Combustion},
volume = {27},
number = {1},
pages = {1157–1165},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Projekte
Publikationsliste